Refine your search:     
Report No.
 - 

Strained Si atoms at SiO$$_{2}$$/Si interface during oxidation of Si$$_{1-x}$$C$$_{x}$$ alloy layer on Si(001) surfaces

Hozumi, Hideaki*; Ogawa, Shuichi*; Yoshigoe, Akitaka ; Ishizuka, Shinji*; Harries, J.; Teraoka, Yuden; Takakuwa, Yuji*

The oxidation of Si$$_{1-x}$$C$$_{x}$$ surface was studied by real-time X-ray photoelectron spectroscopy using synchrotron radiation to clarify the correlation between oxidation-induced strain and oxidation kinetics. Firstly, a p-type Si(001) surface was carbonized by C$$_{2}$$H$$_{4}$$. Then, the surface was oxidized at 773 K under 5.0$$times$$10$$^{-5}$$ Pa of O$$_{2}$$. After saturation, the O$$_{2}$$ pressure was increased to 1.3$$times$$10$$^{-3}$$ Pa. Si-2p, O-1s, and C-1s photoelectron spectra were measured alternately during oxidation. From the time evolution of C-1s/Si-2p(Si$$^{0}$$) ratio, it was found that the Si$$^{0}$$ composes of bulk and strained Si atoms. The increase of C-1s/Si-2p(Si$$^{0}$$) ratio suggests the concentration of carbon at the interface. After O$$_{2}$$ increase, the interface oxidation proceeds. The rate and the oxidation-induced strain decreased with oxidation. We concluded the interface oxidation rate is enhanced by oxidation-induced strain.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.