Refine your search:     
Report No.

Advanced light water reactor with hard neutron spectrum for realizing flexible plutonium utilization (FLWR)

Uchikawa, Sadao; Okubo, Tsutomu; Nakano, Yoshihiro

An advanced LWR with hard neutron spectrum named FLWR is a BWR-type reactor with a core consisting of hexagonal-shaped fuel assemblies with a triangular tight-lattice fuel rod configuration. It has been proposed in order to ensure sustainable energy supply in the future based on the well-experienced LWR technologies. The reactor concept of the FLWR is designed to utilize the most of the existing Advanced Boiling Water Reactor (ABWR) plant system. Therefore, only the core concept is new. The FLWR aims at effective and flexible utilization of uranium and plutonium resources by adopting a two-stage concept of core designs. The core in the first stage of FLWR is for intensive utilization and conservation of plutonium with no degradation of the isotopic quality of plutonium based on the experience of the current LWR-MOX utilizations. The one in the second stage realizes sustainable multiple plutonium recycling with a high conversion ratio over 1.0. When the technologies and infrastructures for multiple recycling with MOX spent fuel reprocessing are established, the core of the first stage proceeds to the second stage by only changing the fuel assembly design in the same reactor system. The present paper summarizes the recent core design studies of FLWR.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.