Refine your search:     
Report No.

Path-integral molecular dynamics simulations for water anion clusters (H$$_2$$O)$$_5^-$$ and (D$$_2$$O)$$_5^-$$

Takayanagi, Toshiyuki*; Yoshikawa, Takehiro*; Motegi, Haruki*; Shiga, Motoyuki

Path-integral molecular dynamics simulations have been performed for water anion clusters,(H$$_2$$O)$$_5^-$$ and (D$$_2$$O)$$_5^-$$, on the basis of a semiempirical one-electron pseudopotential polarization model. Due to larger zero-point vibrational amplitudes for H atoms than that of D atoms, hydrogen-bond lengths in the (H$$_2$$O)$$_5^-$$ cluster are slightly larger than those in (D$$_2$$O)$$_5^-$$. The distribution of the vertical detachment energies for (H$$_2$$O)$$_5^-$$ also show a broader feature than that for (D$$_2$$O)$$_5^-$$. The present simulations thus demonstrate the importance of nuclear quantum effects in water anion clusters.



- Accesses




Category:Chemistry, Physical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.