Refine your search:     
Report No.
 - 

SR-XPS study on energy band structure of thermally grown SiO$$_{2}$$/4H-SiC interface

Kirino, Takashi*; Kagei, Yusuke*; Okamoto, Gaku*; Harries, J.; Yoshigoe, Akitaka ; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; Hosoi, Takuji*; Shimura, Takayoshi*; Watanabe, Heiji*

Device ability of SiC-MOSFET's expected from physical data has not been achieved because channel resistance increases by mobility degradation due to Si0$$_{2}$$/SiC interface defects. Although high channel mobility is obtained in the MOSFET's made on a 4H-SiC(000-1)c face compared to them on a 4H-SiC(0001)Si face, reliability of an oxide film is preferential in the MOSFET's on a 4H-SiC(000-1)c face. Conduction band off-set of SiO$$_{2}$$/SiC interface and energy distribution of the interface level density are known to be different between MOSFET's on a 4H-SiC(000-1)c face and a 4H-SiC(0001)Si face. Physical origins for them are not known yet. In order to make clear the reasons for degradation of interface characteristics and reliability in the MOSFET's made on an SiC(000-1)c face, we evaluated chemical bonding states and energy band structures of Si0$$_{2}$$/SiC interfaces formed on an SiC(0001)Si face and an SiC(000-1)c face using synchrotron radiation photoemission spectroscopy.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.