Refine your search:     
Report No.
 - 

Effects of chemical composition and dose on microstructure evolution and hardening of neutron-irradiated reactor pressure vessel steels

Takeuchi, Tomoaki   ; Kuramoto, Akira*; Kameda, Jun*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Hasegawa, Masayuki*; Okubo, Tadakatsu*; Yoshiie, Toshimasa*; Nishiyama, Yutaka ; Onizawa, Kunio 

This study reports the effects of the composition and dose on microstructure evolution and hardening in high- and low-impurity A533B-1 steels neutron-irradiated in a wide range from 0.32 to 9.9 $$times$$ 10$$^{19}$$ n cm$$^{-2}$$ (E $$>$$ 1 MeV) under a constant high flux at JMTR. The early hardening was found to be caused by mainly matrix defects. The gradual hardening after middle stage of irradiation was found to be caused by the formation of Cu rich clusters (CRCs) and Mn-Ni-Si rich clusters (MNSCs), respectively, in the high- and low-impurity steels. By applying a RB model, it was found that the dislocation-pinning strength of the CRCs and MNSCs is almost the same. Moreover, the high-impurity steel subjected to the highest dose revealed the formation of MNSCs.

Accesses

:

- Accesses

InCites™

:

Percentile:96.23

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.