Refine your search:     
Report No.

Control and pulsewidth-measurement of laser accelerated electron beams

Kotaki, Hideyuki; Hayashi, Yukio; Kawase, Keigo; Mori, Michiaki; Kando, Masaki; Homma, Takayuki; Koga, J. K.; Bulanov, S. V.

Laser wakefield acceleration (LWFA) is regarded as a basis for the next-generation of charged particle accelerators. In experiments, it has been demonstrated that LWFA is capable of generating electron bunches with high quality: quasi-monoenergetic, low in emittance, and a very short duration of the order of ten femto-seconds. Such femtosecond bunches can be used to measure ultrafast phenomena. In applications of the laser accelerated electron beam, it is necessary to generate a stable electron beam and to control the electron beam. A 40 fs laser pulse with the energy of 200 mJ is focused onto a supersonic gas jet. We succeed to generate a stable electron beam by using a nitrogen gas target. The profile of the electron beam can be manipulated by rotating the laser polarization. When we use a S-polarized laser pulse, a 20 MeV electron beam is observed with an oscillation in the image of the energy spectrum. From the oscillation, the pulse width of the electron beam is calculated to at most a few tens fs. The direction of the electron beam can be controlled by changing the gas-jet position. The self-injected electron beam can be controlled by the control of the laser and gas jet.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.