Refine your search:     
Report No.
 - 

Protein dynamics studied by neutron inelastic scattering

Nakagawa, Hiroshi   ; Kataoka, Mikio; Jochi, Yasumasa*; Yamamuro, Osamu*; Nakajima, Kenji  ; Kawamura, Seiko   

Proteins are functional elements in all living organisms. Almost all vital phenomena are mediated by specific proteins. A protein is a hetero-polymer comprised of 20 types of amino acids. The sequence of amino acids of a protein is strictly determined by genetic code. When the polypeptide chain with the amino acid sequence encoded in the gene is biosynthesized, the polypeptide chain folds spontaneously into the unique tertiary structure. The tertiary structure of a protein can be determined by X-ray crystallography. Protein works in an aqueous environment at ambient temperature, indicating that protein cannot escape from thermal fluctuations. In fact, proteins are fluctuating thermally and can take some conformational substates. The magnitude of physiologically relevant input is as the same level as the thermal fluctuations. The understanding of protein dynamics is important to clarify how protein can discriminate physiologically relevant motions from random fluctuation. It is generally recognized that the internal motions of protein is essential for a protein function. Protein internal dynamics is characterized in the time scale of pico - nano second and in the space scale of the order of angstrom. Inelastic neutron scattering (INS) measurement is a powerful and unique technique for studying the protein dynamics. Here, we showed the protein dynamics studies using AGNES and AMATERAS spectrometer, which are installed at JRR-3 and J-PARC, respectively. We will discuss the hydration, temperature and pressure effect on protein dynamics as well as the difference of dynamics between folded and unfolded protein.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.