Refine your search:     
Report No.
 - 

Laser-driven proton generation from a thin-foil target

Sagisaka, Akito; Mori, Michiaki; Pirozhkov, A. S.; Yogo, Akifumi; Nishiuchi, Mamiko; Ogura, Koichi; Orimo, Satoshi; Tampo, Motonobu; Sakaki, Hironao; Hori, Toshihiko; Suguyama, Hironori*; Kiriyama, Hiromitsu; Okada, Hajime; Kanazawa, Shuhei; Kondo, Shuji; Shimomura, Takuya; Nakai, Yoshiki*; Tanoue, Manabu*; Sasao, Hajime; Wakai, Daisuke*; Sasao, Fumitaka*; Sugiyama, Akira; Daido, Hiroyuki; Kondo, Kiminori; Bulanov, S. V.; Esirkepov, T. Z.; Nagatomo, Hideo*; Oishi, Yuji*; Nemoto, Koshichi*; Choi, I. W.*; Lee, J.*

High-intensity laser and mater interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz (THz) radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. We have performed the experiment of proton generation from a thin-foil target for developing the laser-driven ion source. We use a Ti:sapphire laser system (J-KAREN) at JAEA. A laser beam focused by an off-axis parabolic mirror on the thin-foil target. The pulse duration of laser is $$sim$$40 fs (FWHM). The estimated peak intensity is $$sim$$5$$times$$10$$^{19}$$W/cm$$^{2}$$. We observed the protons at the rear side of the target with a TOF(Time of Flight) proton spectrometer. The maximum energy of proton is $$sim$$7 MeV with a 2.5 $$mu$$m thick stainless-steel target.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.