Refine your search:     
Report No.
 - 

Radiation-induced crosslinking of Nafion$$^{textregistered}$$ N117CS membranes

Iwai, Yasunori; Hiroki, Akihiro; Tamada, Masao

The successful formation of radiation-induced crosslinking in Nafion$$^{textregistered}$$ N117CS membranes was clearly demonstrated by tensile testing, a methanol uptake measurement, thermo-mechanical analysis (TMA) and fluorine-19 MAS NMR ($$^{19}$$F NMR). The possibility of radiation-induced crosslinking of Nafion$$^{textregistered}$$ never had been considered with regard to the thermal stability of Nafion$$^{textregistered}$$ membranes, since the scission of PFAE pendant-chains in Nafion$$^{textregistered}$$ membranes in their protonated form begins at 523 K. To improve the thermal stability of Nafion$$^{textregistered}$$ membranes, Nafion$$^{textregistered}$$ membranes were soaked in sodium chloride prior to irradiation. The sodium-exchange Nafion$$^{textregistered}$$ membranes were irradiated with $$gamma$$ rays in an argon atmosphere at temperatures ranging from room temperature to 618 K. The irradiated membranes were re-exchanged to the protonated form. Fluorine-19 MAS NMR results for the alcohol-swollen membranes indicate peaks which originated due to radiation-induced crosslinking. An increase in percent elongation at break, a decrease in methanol uptake, and a decrease in the softening temperature at a differential TMA peak for membranes irradiated at 598 K compared to received membranes also add support for our new finding.

Accesses

:

- Accesses

InCites™

:

Percentile:53.45

Category:Engineering, Chemical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.