Refine your search:     
Report No.
 - 

Stabilization of laser accelerated electron bunch by the ionization-stage control

Mori, Michiaki; Kando, Masaki; Kotaki, Hideyuki; Hayashi, Yukio; Kawase, Keigo; Bulanov, S. V.; Ogura, Koichi; Pirozhkov, A. S.; Kondo, Kiminori; Sugiyama, Akira; Nishimura, Hiroaki*

The pointing stability and the divergence of a quasi-monoenergetic electron bunch generated in a self-injected laser-plasma acceleration regime were investigated. Gas-jet targets have been irradiated with focused 40 fs laser pulses at the 4-TW peak power. A pointing stability of 2.4 mrad root-mean-square (RMS) and a beam divergence of 10.6 mrad (RMS) were obtained using argon gas-jet target for 50 sequential shots, while these values were about three times smaller than at the optimum condition using helium. In particular, the peak electron energy was 9 MeV using argon, which is almost three times lower than that using helium. This result implies that the formation of the wake-field is different between argon and helium, and it plays an important role in the generation of a electron bunch. This stabilization scheme is available for another gas material such as nitrogen. At nitrogen gas-jet target, the pointing stability is more improved to 1.4 times smaller (1.7 mrad (RMS)) than that in argon gas-jet target and the peak energy is increased to grater than 40 MeV. These results prove that this method not only stabilize the e-beam but also allows controlling the electron energy.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.