Refine your search:     
Report No.

Intrabeam scattering at low temperature range

Yu, P.*; He, Z.*; Wei, J.*; Sessler, A. M.*; Okamoto, Hiromi*; Yuri, Yosuke

In the process of beam cooling, the main heating source is intra-beam scattering (IBS), in which Coulomb collisions among particles lead to a growth of the beam's 6D phase-space volume. The results of molecular dynamics simulations have shown an increase of heating rate as the temperature increases from absolute zero, then a peak in the heating rate, and subsequent decrease with increasing temperature. On the other hand, in the traditional IBS theory, heating rate increases monotonically as the temperature becomes lower and lower. In this paper, we attempt to extend the traditional IBS theory valid at high temperatures to relatively low temperature range, by including some many-body effects in the traditional IBS theory. In particular, we take into account the static and dynamic effect of the self-electromagnetic field of the beam. We shall show how these effects modify the traditional theory, and present the evaluation of IBS heating rate of an ion beam in the low temperature range.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.