Refine your search:     
Report No.
 - 

Evaluation of residual stress distribution due to welding and surface machining and crack growth behavior

Ihara, Ryohei*; Hashimoto, Tadafumi*; Mikami, Yoshiki*; Katsuyama, Jinya  ; Onizawa, Kunio ; Mochizuki, Masahito*

In light-water reactor nuclear power stations, stress corrosion cracking (SCC) has been observed near the welded joint in recirculation piping made of low-carbon austenitic stainless steel. Residual stress is one of the most important factors in the occurrence and propagation of SCC. The joining process of pipes which usually consists of surface machining and welding results in high tensile residual stress. In this study, finite element analysis method was developed to evaluate residual stress generated by surface machining considering the shape of machining tool and machining condition. Residual stress due to surface machining was measured by X-ray diffraction method and analysed the method developed. It was shown that high tensile residual stress due to machining occurred very limited surface region. It was also shown that surface machining affected SCC growth behavior significantly from the SCC analysis results based on residual stress distributions due to surface machining and welding.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.