検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Failure mechanism of silicide and aluminide fuels during power transient

出力過渡下でのシリサイド及びアルミナイド燃料の破損メカニズム

柳澤 和章

Yanagisawa, Kazuaki

燃料破損しきい値に燃料芯材密度(2.2, 3.0、及び4.0g/cc)が及ぼす影響につき、シリサイド燃料(密度4.8g/cc)を参考データとして比較検討した。(1)供試燃料板(4.8g/cc以下)の核沸騰離脱(DNB)温度は175$$pm$$24$$^{circ}$$Cであり、参考燃料のそれ(180$$pm$$14$$^{circ}$$C)と大きな違いはなかった。(2)参考燃料は大きな急冷温度幅(94$$^{circ}$$C以上)と短い急冷時間(0.13秒以下)で破損したが、供試燃料板は芯材アルミニウムの塑性流動性が高く106cal/g$$cdot$$fuel plateまで破損はなかった。燃料密度を下げると燃料の塑性性が向上する。(3)燃料密度とは無関係に、燃料板の曲がりは到達最高温度(PCST)の増加とともに大きくなった。JRR-3の曲がりに対する運転制限値(228$$^{circ}$$C以下)においては、最大曲がりは15%(0.4mm)で、ほとんどのデータは4%以内であった。(4)燃料板厚みで評価した軸方向塑性歪で見ると供試燃料は膨らんでいたが参考燃料は収縮していた。

An influence of fuel core density (2.2, 3.0 and 4.0 g/cc) on a fuel failure was studied comparing the silicide fuel (4.8 g/cc) as the reference. (1) The DNB value of the test specimens (below 4.8 g/cc) was 175 $$pm$$ 24 $$^{circ}$$C, having no difference to the reference (180 $$pm$$ 14 $$^{circ}$$C). (2) The reference fuel failed at the large temperature drop (above 94 $$^{circ}$$C) and the short time to quench (below 0.13 s). The test specimens did not fail until 106 cal per gram fuel plate due to the enhanced plasticity of the aluminum matrix. The lower the fuel density, the more the plasticity enhanced. (3) Irrespective to fuel density, the bow was increased with the increasing PCST. Experimental fact revealed that maximum bow at JRR-3 operating (below 228 $$^{circ}$$C) is 15% (0.4 mm), where the almost data are within 4% (0.1 mm). (4) For axial permanent strain evaluated by the plate thickness, the test specimens were expanded but the references were shrunk.

Access

:

- Accesses

InCites™

:

パーセンタイル:0.01

分野:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.