Refine your search:     
Report No.

Interfacial properties of HIP joints between beryllium and reduced activation ferritic/martensitic steel

Hirose, Takanori; Ando, Masami; Ogiwara, Hiroyuki*; Tanigawa, Hiroyasu; Enoeda, Mikio; Akiba, Masato

In this work, the interfacial properties of Be-reduced activation ferritic/martensitic steel (RAFMs) joints were investigated for the first wall of an ITER test blanket module (TBM). The joints were produced by the solid state hot isostatic pressing (HIP) method. Chromium (Cr) was used as a diffusion barrier with a thickness of 1 micron or 10 microns, formed by plasma vapor deposition on the Be surface. The HIPping was conducted at 1023 K and 1233 K. The temperatures are standard normalizing and tempering temperatures of F82H. EPMA showed the Cr layer effectively worked as a diffusion barrier at 1023 K. However, for the F82H/Be interface which underwent HIP at 1233 K followed by tempering a Be rich layer was formed. Bend tests revealed that a thin Cr layer and low temperature HIP is preferable.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.