Refine your search:     
Report No.
 - 

Degradation modeling of InGaP/GaAs/Ge triple-junction solar cells irradiated with various-energy protons

Sato, Shinichiro; Miyamoto, Haruki*; Imaizumi, Mitsuru*; Shimazaki, Kazunori*; Morioka, Chiharu*; Kawano, Katsuyasu*; Oshima, Takeshi

Degradation modeling of InGaP/GaAs/Ge triple-junction (3J) solar cells subjected to proton irradiation is performed with the use of a one-dimensional optical device simulator, PC1D. By fitting the external quantum efficiencies of 3J solar cells degraded by 30 keV, 150 keV, 3 MeV, or 10 MeV protons, the shortcircuit currents ($$I_{SC}$$) and open-circuit voltages ($$V_{OC}$$) are simulated. The damage coefficients of minority carrier diffusion length ($$K_L$$) and the carrier removal rate of base carrier concentration ($$R_C$$) of each subcell are also estimated. The values of $$I_{SC}$$ and $$V_{OC}$$ obtained from the calculations show good agreement with experimental values at an accuracy of 5%. These results confirm that the degradation modeling method developed in this study is effective for the lifetime prediction of 3J solar cells.

Accesses

:

- Accesses

InCites™

:

Percentile:90.65

Category:Energy & Fuels

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.