Refine your search:     
Report No.

Guiding and confining fast electrons by transient electric and magnetic fields with a plasma inverse cone

Lei, A. L.*; Cao, L. H.*; Yang, X. Q.*; Tanaka, Kazuo*; Kodama, Ryosuke*; He, X. T.*; Mima, Kunioki*; Nakamura, Tatsufumi; Norimatsu, Takayoshi*; Yu, W.*; Zhang, W. Y.*

The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong field s are of importance for fast ignition related research.



- Accesses




Category:Physics, Fluids & Plasmas



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.