Refine your search:     
Report No.
 - 

Minimum energy motion and core structure of pure edge and screw dislocations in aluminum

Tsuru, Tomohito   ; Kaji, Yoshiyuki  ; Shibutani, Yoji*

The minimum energy motions of pure edge and screw dislocations in aluminum were investigated by atomistic transition state analysis. While the Peierls-Nabarro model and its modifications duplicate the essential nature of a dislocation within a crystalline lattice, the atomic-level relaxation of the dislocation core should be considered to estimate the minimum energy barrier. In this study, the minimum energy barriers and core structures for the quasi-static motions of pure edge and screw dislocations were investigated by the parallelized nudged elastic band method with the embedded atom method potential. We found that the local potential energy is distributed asymmetrically around the dislocation line for the most stable state and that it is bilaterally symmetrical at the transition state of the dislocation motion. The short-ranged structural relaxation of the core rearrangement as well as the wide-ranging elastic stress field is of great importance in realistic dislocation motion.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.