Refine your search:     
Report No.
 - 

Design of $$gamma$$-ray and neutron area monitoring system for the IFMIF/EVEDA accelerator building

Takahashi, Hiroki  ; Maebara, Sunao; Kojima, Toshiyuki; Kubo, Takashi; Sakaki, Hironao; Takeuchi, Hiroshi; Shidara, Hiroyuki; Hirabayashi, Keiichi*; Hidaka, Kosuke*; Shigyo, Nobuhiro*; Watanabe, Yukinobu*; Sagara, Kenshi*

In the IFMIF/EVEDA accelerator, the engineering validation up to 9 MeV by employing the deuteron beam of 125 mA are planning at the BA site in Rokkasho, Aomori, Japan, the personnel protection system (PPS) is indispensable. The PPS inhibit the beam by receiving the interlock signal from the $$gamma$$-ray and neutron monitoring system. The $$gamma$$-ray and neutron detection level which is planned to be adopted are "80 keV to 1.5 MeV ($$gamma$$-ray)" and "0.025 eV to 15 MeV (neutron)". For the present shielding design, it is absolutely imperative for the safety review to validate the shielding ability which makes detection level lower than these $$gamma$$-ray and neutron detector. For this purpose, the energy reduction of neutron and photon for water and concrete is evaluated by PHITS code. From the calculating results, it is found that the photon energy range extended to 10 MeV by water and concrete shielding material only, an additional shielding to decrease the photon energy of less than 1.5 MeV is indispensable.

Accesses

:

- Accesses

InCites™

:

Percentile:17.88

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.