Refine your search:     
Report No.

Integrated simulation of ELM triggered by pellet through energy absorption and transport enhancement

Hayashi, Nobuhiko; Parail, V.*; Koechl, F.*; Aiba, Nobuyuki; Takizuka, Tomonori; Wiesen, S.*; Lang, P.*; Oyama, Naoyuki; Ozeki, Takahisa; JET-EFDA Contributors*

Two integrated core / scrape-off-layer (SOL) / divertor transport codes TOPICS-IB and JINTRAC with links to MHD stability codes have been coupled with models of pellet injection to clarify effects of pellet on the behavior of edge localized modes (ELMs). The energy absorption by pellet and its further displacement due to E$$times$$B drift as well as transport enhancement by the pellet were found to be able to trigger the ELM. The ablated cloud of pellet absorbs the background plasma energy and causes the radial redistribution of pressure due to the subsequent E$$times$$B drift. On the other hand, the sharp increase in local density and temperature gradients in the vicinity of ablated cloud could cause transient enhancement of heat and particle transport. Both mechanisms produce a region of an increased pressure gradient in the background plasma profile within the pedestal, which triggers the ELM. The mechanisms have the potential to explain a wide range of experimental observations.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.