Refine your search:     
Report No.
 - 

Inverse spin-Hall effect induced by spin pumping in metallic systems

Ando, Kazuya*; Takahashi, Saburo; Ieda, Junichi   ; Kajiwara, Yosuke*; Nakayama, Hiroyasu*; Yoshino, Tatsuro*; Harii, Kazuya*; Fujikawa, Yasunori*; Matsuo, Mamoru*; Maekawa, Sadamichi; Saito, Eiji

The inverse spin-Hall effect (ISHE) induced by the spin pumping has been investigated systematically in simple ferromagnetic/paramagnetic bilayer systems. The spin pumping driven by ferromagnetic resonance injects a spin current into the paramagnetic layer, which gives rise to an electromotive force transverse to the spin current using the ISHE in the paramagnetic layer. In a Ni$$_{81}$$Fe$$_{19}$$/Pt film, we found an electromotive force perpendicular to the applied magnetic field at the ferromagnetic resonance condition. The spectral shape of the electromotive force is well reproduced using a simple Lorentz function, indicating that the electromotive force is due entirely to the ISHE induced by the spin pumping; the extrinsic magnetogalvanic effects are eliminated in this measurement. The electromotive force varies systematically by changing the microwave power, magnetic-field angle, and film size, which are well reproduced by a calculation based on the Landau-Lifshitz-Gilbert equation combined with the models of the ISHE and spin pumping. The electromotive force was observed also in a Pt/Y$$_3$$Fe$$_4$$GaO$$_{12}$$ film, in which the metallic Ni$$_{81}$$Fe$$_{19}$$ layer is replaced by an insulating Y$$_3$$Fe$$_4$$GaO$$_{12}$$ layer, supporting that the spin-pumping-induced ISHE is responsible for the observed electromotive force.

Accesses

:

- Accesses

InCites™

:

Percentile:99.49

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.