Refine your search:     
Report No.

EPR and ${it ab initio}$ calculation study on the EI4 center in 4$$H$$- and 6$$H$$-SiC

Carlsson, P.*; Son, N. T.*; Gali, A.*; Isoya, Junichi*; Morishita, Norio; Oshima, Takeshi; Magnusson, B.*; Janz$'e$n, E.*

Electron Paramagnetic Resonance (EPR) studies of the EI4 center in 4$$H$$- and 6$$H$$-Silicon Carbide (SiC) were carried out. The EI4 center was drastically enhanced in electron-irradiated high-purity semi-insulating materials by annealing at 700-750 $$^{circ}$$C. An additional large-splitting $$^{29}$$Si hf structure and $$^{13}$$C hf lines of the EI4 defect were observed. Comparing the data obtained from the hf interactions and the annealing behavior, and also from ${it ab initio}$ supercell calculations of different carbon-vacancy-related complexes, we propose a complex between a carbon vacancy-carbon antisite and a carbon vacancy at the third-neighbor site of the antisite in the neutral charge state, (V$$_{C}$$-C$$_{Si}$$V$$_{C}$$)$$^{0}$$, as a new defect model for the EI4 center.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.