Refine your search:     
Report No.
 - 

Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline

Yogo, Akifumi; Maeda, Takuya; Hori, Toshihiko; Sakaki, Hironao; Ogura, Koichi; Nishiuchi, Mamiko; Sagisaka, Akito; Kiriyama, Hiromitsu; Okada, Hajime; Kanazawa, Shuhei; Shimomura, Takuya; Nakai, Yoshiki*; Tanoue, Manabu*; Sasao, Fumitaka; Bolton, P.; Murakami, Masao*; Nomura, Taisei*; Kawanishi, Shunichi; Kondo, Kiminori

Human cancer cells are irradiated by laser-driven quasi-monoenergetic protons. Laser pulse intensities at the $$5times 10^{19}$$ W/cm$$^2$$ level provide the source and acceleration field for protons that are subsequently transported by four energy-selective dipole magnets. The transport line delivers 2.25 MeV protons with an energy spread of 0.66 MeV and a bunch duration of 20 ns. The survival fraction of in-vitro cells from a human salivary gland tumor is measured with a colony formation assay following proton irradiation at dose levels up to 8 Gy, for which the single bunch does rate is $$1 times 10^7$$ Gy/s and the effective dose rate is 0.2 Gy/s for 1-Hz repetition of irradiation. Relative biological effectiveness at the 10% survival fraction is measured to be $$1.20 pm 0.11$$ using protons with a linear energy transfer of 17.1 keV/$$mu$$m.

Accesses

:

- Accesses

InCites™

:

Percentile:6.08

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.