Refine your search:     
Report No.

Development of nano-structure controlled polymer electrolyte fuel-cell membranes by high-energy heavy-ion irradiation; Study of their proton conductivity

Yamaki, Tetsuya; Kobayashi, Misaki*; Asano, Masaharu; Nomura, Kumiko*; Takagi, Shigeharu*; Maekawa, Yasunari; Yoshida, Masaru*

This study deals with the application of high-energy heavy ion beams from the cyclotron accelerator of Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), JAEA. Our strategic focus is centered on using nano-scale controllability of the ion-beam processing; the membrane preparation involves (1) the irradiation of commercially-available base polymer films with hundreds of MeV ions, (2) graft polymerization of vinyl monomers into electronically-excited parts along the ion trajectory, called latent tracks, and (3) sulfonation of the graft polymers. The resulting membranes exhibited anisotropic proton transport, i.e., higher conductivity in the thickness direction. The through-plane proton conductivity, which is a more direct measurement of the membrane's conductivity and is of interest in an operating fuel cell, was comparable to that of a Nafion112 membrane at the same ion exchange capacity level.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.