Refine your search:     
Report No.
 - 

Simulation on nanostructured metals based on multiscale crystal plasticity considering effect of grain boundary

Aoyagi, Yoshiteru; Shimokawa, Tomotsugu*; Shizawa, Kazuyuki*; Kaji, Yoshiyuki  

In this study, we develop a crystal plasticity model considering an effect of grain boundary. In order to predict increase of local critical resolved shear stress due to existence of grain boundaries, information of grain boundary as a role of dislocation sources is introduced into a hardening law of crystal plasticity. In addition, carrying out FE simulation for plastic deformation of FCC polycrystal, the stress-strain responses such as increase of yield stress due to existence of grain boundary are discussed. We investigate comprehensively the effect of dislocation behavior on the material property of nanostructured metal. The increase of yield stress and the decrease of hardening ratio with the reduction of grain size are caused by local differences on CRSS and dislocation behavior, respectively.

Accesses

:

- Accesses

InCites™

:

Percentile:73.92

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.