Refine your search:     
Report No.

The Microbe capture experiment in space; Fluorescence microscopic detection of microbes captured by aerogel

Sugino, Tomohiro*; Yokobori, Shinichi*; Yang, Y.*; Kawaguchi, Yuko*; Hasegawa, Sunao*; Hashimoto, Hirofumi*; Imai, Eiichi*; Okudaira, Kyoko*; Kawai, Hideyuki*; Tabata, Makoto*; Yoshimura, Yoshitaka*; Narumi, Issei; Hayashi, Nobuhiro*; Marumo, Katsumi*; Yano, Hajime*; Yamashita, Masamichi*; Kobayashi, Kensei*; Yamagishi, Akihiko*

In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescence dye, and how to distinguish microbes from other materials (i.e. aerogel and particles such as clay). The surface of microparticles captured by aerogel is often vitrified. The non-specific fluorescent light is often observed from vitrified materials. Therefore, we need to distinguish fluorescent light of stained microbes from that of spectral characteristics of vitrified materials and bleaching rate are going to be need to distinguish stained microbes with DNA-specific fluorescence dye and other materials such as clay and aerogel. We simulated the high-speed collision of micro-particles to the aerogel with the two stage light gas gun (ca. 4 km/s). The micro-particles containing dried cells of ${it Deinococcus radiodurans}$ mixed with clay material were used for the collision experiment, and the captured particles, which was stained after collision experiment, were observed with a fluorescence microscope. This experiment suggests that the captured microbes can be detected and be distinguished from clay materials.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.