Beam optics in a MeV-class multi-aperture multi-grid accelerator for the ITER neutral beam injector
Kashiwagi, Mieko; Taniguchi, Masaki; Umeda, Naotaka; DeEsch, H. P. L.*; Grisham, L. R.*; Boilson, D.*; Hemsworth, R. S.*; Tanaka, Masanobu*; Tobari, Hiroyuki; Watanabe, Kazuhiro; Inoue, Takashi
In a multi-aperture multi-grid (MAMuG) accelerator of the ITER neutral beam injector (NBI), 1 MeV, 40 A D ion beam is required for 3600 s. Suppression of grid power loading by the direct interception of deflected beamlets is one of the critical issues to realize this accelerator. The beamlets are deflected due to space charge repulsion among beamlets/beam groups and magnetic field. Moreover, the beamlet deflection is influenced by electric field distortion generated by grid supports. To examine such complicated beamlet deflections and design the compensating methods, a three-dimensional beam analysis has been applied to the ITER accelerator. As the simulation model, a 1/4 accelerator model including step/edge of the grid supports is constructed. As results, compensation methods of the beamlet deflection, that it, a metal bar of 1 mm thick around the aperture area, and an aperture offset of 1 mm, were designed.