Refine your search:     
Report No.

Charge-induced vortex lattice instability

Mounce, A. M.*; Oh, S.*; Mukhopadhyay, S.*; Halperin, W. P.*; Reyes, A. P.*; Kuhns, P. L.*; Fujita, Kazuhiro*; Ishikado, Motoyuki; Uchida, Shinichi*

It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for high-temperature superconductors. Hall effect and nuclear magnetic resonance (NMR) experiments suggest the existence of charge accumulation in the vortex core, but the effects are small and the interpretation controversial. Here we show that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at a sufficiently high magnetic field if there is charge trapped on the vortex core. Our NMR measurements of the magnetic fields generated by vortices in Bi$$_{2}$$Sr$$_{2}$$CaCu$$_{2}$$O$$_{8+y}$$ single crystals provide evidence for an electrostatically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of $$sim2 times 10^{-3}e$$, depending on doping, in line with theoretical estimates.



- Accesses




Category:Physics, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.