Refine your search:     
Report No.
 - 

Vacuum insulation and achievement of 980 keV, 185 A/m$$^{2}$$ H$$^{-}$$ ion beam acceleration at JAEA for the ITER neutral beam injector

Tobari, Hiroyuki; Taniguchi, Masaki; Kashiwagi, Mieko; Dairaku, Masayuki; Umeda, Naotaka; Yamanaka, Haruhiko; Tsuchida, Kazuki; Takemoto, Jumpei; Watanabe, Kazuhiro; Inoue, Takashi; Sakamoto, Keishi

Vacuum insulation is a common issue for the accelerator and the HV bushing for the ITER NBI. The HV bushing has five-stage structure and each stage consists of double-layered insulators. Hence, several triple points exist around the insulators. To reduce electric field at those points simultaneously, three types of stress ring were developed. In voltage holding test of a full-scale mockup equipped with those stress rings, 120% of rated voltage was sustained and the voltage holding capability required in ITER was verified. In the MeV accelerator, voltage holding capability was not sufficient due to breakdown triggered by electric field concentration at edge and corner on grid components. By extending gap length, 1 MV was sustained in vacuum. Furthermore, with new accelerator grids which compensates beam deflection due to magnetic field and space charge repulsion between beamlets, 980 keV, 185 A/m$$^{2}$$ H$$^{-}$$ ion beam acceleration was demonstrated, which was close to ITER requirement.

Accesses

:

- Accesses

InCites™

:

Percentile:5.25

Category:Physics, Fluids & Plasmas

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.