Refine your search:     
Report No.

Analysis of source-sink regulation system using cold-girdling and positron-emitting tracer imaging system (PETIS)

Yamazaki, Haruaki; Suzui, Nobuo; Kawachi, Naoki; Ishii, Satomi; Shimada, Hiroaki*; Fujimaki, Shu

Improvement in crop yield is expected by understanding "source-sink regulation system" of higher plants. In this study, we analyzed the photoassimilate distribution system to two sink organs, the root and the shoot apex, using positron-emitting tracer imaging system (PETIS) and cold-girdling technique, which is known as a method to inhibit photoassimilate translocation. $$^{11}$$CO$$_{2}$$ exposure and PETIS imaging were conducted two times with the same test plant. Cold-girdling was treated only in the second run by cooling the boundary region on the stem between shoot and root. Time-activity curves were generated from the regions of the root, shoot apex and source leaf in the PETIS data. Then, three indices were analyzed; the influx rates of photoassimilate into the two sink organs, the root and the shoot apex, and the efflux rate from the source leaf. As the results, the influx rate was decreased drastically into the root. On the other hand, influx into the shoot apex hardly changed. And the efflux rate from the leaf was decreased. These results suggest that the "source supply" is adjusted so as to keep influx rate of photoassimilate into the untreated sink.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.