Refine your search:     
Report No.
 - 

Development of remote welding techniques for in-pile IASCC capsules and evaluation of material integrity on capsules for long irradiation period

Shibata, Akira ; Nakano, Junichi; Omi, Masao; Kawamata, Kazuo; Nakagawa, Tetsuya; Tsukada, Takashi 

To simulate Irradiation assisted stress corrosion cracking (IASCC) behavior by in-pile experiments, it is necessary to irradiate specimens up to a neutron fluence that is higher than the IASCC threshold fluence. Pre-irradiated specimens must be relocated from pre-irradiation capsules to in-pile capsules. Hence, a remote welding machine has been developed. And the integrity of capsule housing for a long term irradiation was evaluated by tensile tests in air and slow strain rate tests in water. Two type specimens were prepared. Specimens were obtained from the outer tubes of capsule irradiated to 1.0-3.9 $$times$$ 10$$^{26}$$ n/m$$^{2}$$ (E$$>$$ 1 MeV). And specimens were irradiated in a leaky capsule to 0.03-1.0 $$times$$ 10$$^{26}$$ n/m$$^{2}$$. Elongation more than 15% in tensile test at 423 K was confirmed and no IGSCC fraction was shown in SSRT at 423 K which was estimated as temperature at the outer tubes of the capsule under irradiation.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.