Refine your search�ソスF     
Report No.
 - 

An Observational construction management in the Horonobe Underground Research Laboratory Project

Tsusaka, Kimikazu; Inagaki, Daisuke; Tokiwa, Tetsuya; Yokota, Hideharu; Nago, Makito*; Matsubara, Makoto*; Shigehiro, Michiko*

In the Horonobe URL Project, three shafts are planned to be excavated up to the depth of 500 m in the Neogene sedimentary rocks. The host rock of the URL site is comprised of diatomaceous and siliceous mudstones, which are the Koetoi and Wakkanai Formations, respectively. Approximately 100 m thick fracture zone with high hydraulic conductivity develops above about 400 m in depth in the Wakkanai Formation. The shaft sinking through the fracture zone is the most challenging issue from the aspect of tunnel engineering in the project. In the fracture zone, there is high possibility of severe breakout and spalling in shaft wall because the shafts might be intersecting faults with the size greater than shaft diameter in addition to low intact rock strength at great depth. In practice, prior to the construction of the Ventilation Shaft through the fracture zone below a depth of 250 m, the three dimensional fault distribution were predicted by integrating borehole investigation results and geological response to pre-excavation grouting operation. The countermeasure was also designed against massive spalling. During the shaft sinking, fracture mapping of shaft wall was carried out in order to evaluate the prediction of fault distribution. Roughness of shaft wall was also measured by three dimensional laser scanner in order to investigate the shape and volume of spalling resulting from the excavation work. Consequently, the Ventilation Shaft has successfully been constructed through the fracture zone. This is because the prediction of fault distribution was accurate, and the countermeasure against concrete lining damage due to spalling was promptly applied.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.