Numerical simulation of turbulent flow of coolant in a test blanket module of nuclear fusion reactor
Seki, Yohji; Onishi, Yoichi*; Yoshikawa, Akira; Tanigawa, Hisashi; Hirose, Takanori; Ozu, Akira ; Ezato, Koichiro; Tsuru, Daigo; Suzuki, Satoshi; Yokoyama, Kenji; Enoeda, Mikio; Tanigawa, Hiroyasu; Kureta, Masatoshi
R&D of a test blanket module (TBM) with a water-cooled solid breeder has been performed for ITER. For our design, the temperature of a coolant pressurized up to 15 MPa is designed as 598 K in an outlet of the TBM, respectively. Establishment of estimation methods of the flow phenomena is important for designs of the channel network and predictions of the material corrosion and erosion. A purpose of our research is to establish and verify the method for the prediction of the flow phenomena. The Large-eddy simulation and Reynolds averaged Navier-Stokes simulation have been performed to predict the pressure drop and flow rates in the channels of the side wall. It results the inhomogeneous flow rates in each channel. At viewpoint of the heat removal capability, however, the smallest flow-rates near the first wall are evaluated with satisfying acceptance criteria. Moreover, the results of the numerical simulation correspond with those of experiment performed for the real size mock-up.