Refine your search:     
Report No.
 - 

Grain growth predictions by multi-phase-field modeling with higher-order term

Hirouchi, Tomoyuki*; Tsuru, Tomohito   ; Shibutani, Yoji*

Multi-phase-field (MPF) modeling with a higher-order term, which can stably analyze the triple junction (TJ) behaviors even with large difference between grain boundary (GB) energies, is proposed for the more realistic grain growth prediction. Grain growth simulations of systems including multiple junctions show that the proposed MPF model can represent the stable TJ behaviors with wider range of GB energies than the conventional model, and well perform the quadruple junction behaviors in agreement with the responding theory. Two kinds of GB energy distribution models are employed here, which are based on all of and only low cuspate energies of $$langle$$1 1 0$$rangle$$ symmetric tilt GB energy in pure Al by molecular dynamics simulations. Polycrystalline grain growth simulations combining with either GB energy distribution exhibited the large amount of nucleation of low-energy boundaries, which would be quantitatively compatible to the experiments.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.