Refine your search:     
Report No.
 - 

Study on development of evaluation technique of in-situ tracer test in Horonobe Underground Research Laboratory Project (Contract research)

Yokota, Hideharu; Amano, Kenji; Maekawa, Keisuke; Kunimaru, Takanori; Naemura, Yumi*; Ijiri, Yuji*; Motoshima, Takayuki*; Suzuki, Shunichi*; Teshima, Kazufumi*

To evaluate permeable heterogeneity in a fracture and scale effects which are problems to be solved based on the ${it in-situ}$ mass transportation data of fractures in hostrock, a number of tracer tests are simulated in a fictitious single plate fracture generated on computer in this study. And the transport parameters, e.g. longitudinal dispersion length, true velocity and dilution rate, are identified by fitting one- and two-dimensional models to the breakthrough curves obtained from the simulations in order to investigate the applicability of these models to the evaluation of ${it in-situ}$ tracer test. As a result, one-dimensional model yields larger longitudinal dispersion length than two-dimensional model in the both cases of homogeneous and heterogeneous hydraulic conductivity fields of the fictitious fracture. And, the longitudinal dispersion length identified from a tracer test is smaller and/or larger than the macroscopic longitudinal dispersion length identified from whole fracture. It is clarified that these are occurred by shorter or longer distance between boreholes compare to the correlation length of geostatistical heterogeneity of fictitious fracture.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.