Refine your search:     
Report No.

Challenge for more efficient transverse laser cooling for beam crystallization

Noda, Akira*; Nakao, Masao*; Soda, Hikaru*; Tongu, Hiromu*; Ito, Kiyokazu*; Okamoto, Hiromi*; Osaki, Kazuya*; Yuri, Yosuke; Jimbo, Koichi*; Grieser, M.*; He, Z.*

Mg ion beams have been successfully laser-cooled both in longitudinal and transverse directions at S-LSR in ICR, Kyoto University. The cooling rate, however, is not strong enough to realize a crystalline beam due to heating from intra-beam scattering (IBS). Reduction of the beam intensity is inevitable to suppress this IBS effect, which, however, had resulted in poor S/N ratio for observation of the transverse beam size. We, therefore, describe a new beam-scraping scheme: The scheme selects out ions in the distribution tail of the transverse phase space, keeping the beam density in the core part by simultaneous application of multi-dimensional laser cooling and beam scraping. The strategy to realize the scheme effectively has been searched by combination of the beam experiments and computer simulations.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.