Refine your search�ソスF     
Report No.

Isotope-selective ionization utilizing molecular alignment and non-resonant multiphoton ionization

Akagi, Hiroshi; Kasajima, Tatsuya; Kumada, Takayuki   ; Itakura, Ryuji; Yokoyama, Atsushi; Hasegawa, Hirokazu*; Oshima, Yasuhiro*

We demonstrate a laser nitrogen isotope separation, which is based on field-free alignment and angular dependent ionization of $$^{14}$$N$$_{2}$$ and $$^{15}$$N$$_{2}$$ isotopomers. A linearly-polarized short laser pulse ($$lambda$$$$sim$$795 nm, $$Delta$$$$tau$$$$sim$$60 fs) creates rotational wave packets in the isotopomers, which periodically revive with different revival times as a result of different moments of inertia. Another linearly-polarized short laser pulse ($$lambda$$$$sim$$795 nm, $$Delta$$$$tau$$$$sim$$60 fs) ionizes one of the isotopomers selectively as a result of their different angular distributions. In the present experiments, the ion yield ratio $$R$$ [= $$I$$($$^{15}$$N$$_{2}$$$$^{+}$$)/$$I$$($$^{14}$$N$$_{2}$$$$^{+}$$)] can be changed in the range from 0.85 to 1.22, depending on the time delay between the two laser pulses.



- Accesses







[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.