Refine your search:     
Report No.
 - 

Development of boron sheet and DT neutron irradiation experiments of multi-layered concrete structure with boron sheet

Sato, Satoshi; Maegawa, Toshio*; Yoshimatsu, Kenji*; Sato, Koichi*; Nonaka, Akira*; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara  

In the previous study, we developed a multi-layered concrete structure to reduce induced activity in concrete applied for neutron generation facilities such as a fusion reactor. This structure is composed of low activation concrete as the first layer, boron doped low activation concrete as the second layer and ordinary concrete as the third layer from the side of the neutron source. In this study, as an alternative of the boron doped low activation concrete we have developed the boron doped resin sheet with boron carbonate and resin to reduce the construction cost. The weight ratio of the boron carbonate to the resin is 0.75. The developed boron sheet has good flexibility and sufficient strength for repeated bending. DT neutron irradiation experiments for four multi-layered concrete structures with the boron sheet have been performed at the FNS (Fusion Neutronics Source) facility in JAEA in order to study shielding performance of the structures with the boron sheet. Structure-1 of about 30 cm in width, 30 cm in height and 50 cm in thickness is composed of low activation concrete of 20 cm in thickness as the first layer and ordinary concrete of 30 cm in thickness as the second layer. The boron sheet is inserted between the first and second layers. In Structure-2 one more boron sheet is inserted at the 10 cm depth from the surface of Structure-1. Structure-3 added one more boron sheet at 30 cm depth from the surface of Strucure-2. For comparison, Structure-4 has no boron sheet. The reaction rates were measured every 5 cm in depth with activation foils of gold and niobium. By inserting the boron sheet, the reaction rate of the gold generated by low energy neutrons decreases by a factor of about four. It is demonstrated that the multi-layered concrete structure with the boron sheet effectively reduces low energy neutrons.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.