Refine your search:     
Report No.
 - 

Intrinsic edge asymmetry in narrow zigzag hexagonal heteroatomic nanoribbons causes their subtle uniform curvature

Avramov, P.; Fedorov, D. G.*; Sorokin, P. B.*; Sakai, Seiji; Entani, Shiro; Otomo, Manabu; Matsumoto, Yoshihiro; Naramoto, Hiroshi*

The atomic and electronic structure of narrow zigzag nanoribbons with finite length, consisting of graphene terminated by fluorine on one side, hexagonal ($$h$$)-BN, and $$h$$-SiC were studied with density functional theory. It is found that the asymmetry of nanoribbon edges causes a uniform curvature of the ribbons due to structural stress in the aromatic ring plane. Narrow graphene nanoribbons terminated with fluorine on one side demonstrate a considerable out-of-plane bend, suggesting that the nanoribbon is a fraction of a conical surface. It is shown that the intrinsic curvature of the narrow nanoribbons destroys the periodicity and results in a systematic cancellation of the dipole moment. The in- and out-of-plane curvature of thin arcs allows their closure in nanorings or cone fragments of giant diameter.

Accesses

:

- Accesses

InCites™

:

Percentile:79.49

Category:Chemistry, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.