Refine your search:     
Report No.
 - 

Flow analysis around an in-line forced oscillating circular cylinder using IB-method

Kino, Chiaki; Watanabe, Tadashi*; Nishida, Akemi  ; Takemiya, Hiroshi

Flow around an in-line forced oscillating circular cylinder was simulated numerically by using OpenFOAM in order to clarify the mechanism of flow induced vibration. Immersed boundary Method is used to solve the moving boundary. Reynolds number is set to 1000 and the reduced velocity is set to the range from 0 to 10. In the first excitation region, it is shown that negative drag force which is a factor for an in-line oscillation of a circular cylinder comes from contacting between high pressure region and a circular cylinder. The present simulation shows that twin vortex has an important role on the contact phenomena. In the second excitation region, it is shown that time averaged lift drag doesn't become zero on some oscillating conditions. It is considered that a cross-flow oscillation comes from the phenomena.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.