Refine your search:     
Report No.

In situ and time-resolved small-angle neutron scattering observation of star polymer formation via arm-linking reaction in ruthenium-catalyzed living radical polymerization

Terashima, Takaya*; Motokawa, Ryuhei  ; Koizumi, Satoshi*; Sawamoto, Mitsuo*; Kamigaito, Masami*; Ando, Tsuyoshi*; Hashimoto, Takeji*

${it In situ}$ and time-resolved small-angle neutron scattering (SANS) was employed for the elucidation of star polymer formation mechanism via linking reaction of living linear polymers in ruthenium-catalyzed living radical polymerization. Here, methyl methacrylate (MMA) was first polymerized with R-Cl/RuCl$$_{2}$$(PPh$$_{3}$$)$$_{3}$$/tribuylamine ($$n$$-Bu$$_{3}$$N) initiating system, followed by the addition of ethylene glycol dimethacrylate (EGDMA: 3) as a linking agent. After the in situ addition of a small amount of 3 to living linear PMMA, the SANS analysis revealed the following three steps: (process II-1) formation of block copolymers (4) and competitive formation of the small star polymers via the linking reaction of 4 and 4; (process II-2) star-star linking of the small star polymers into star polymers and putting 4 into the core of the star polymers, leading to formation of the microgel-core star polymers; (process II-3) growth of the microgelcore star polymers (5) via placement of 4 into the microgel-core star polymers. Furthermore, the SANS profiles, obtained as a function of polymerization time, were quantitatively analyzed with a core-shell spherical model in order to determine the microstructures of the star polymers: The final reaction product had an average radius of microgel-core ($$sim$$ 1 nm), and average arm numbers N $$sim$$ 17.



- Accesses




Category:Polymer Science



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.