Refine your search:     
Report No.
 - 

Li(Zn,Mn)As as a new generation ferromagnet based on a I-II-V semiconductor

Deng, Z.*; Jin, C. Q.*; Liu, Q. Q.*; Wang, X. C.*; Zhu, J. L.*; Feng, S. M.*; Chen, L. C.*; Yu, R. C.*; Arguello, C.*; Goko, Tatsuo*; Ning, F.*; Zhang, J.*; Wang, Y.*; Aczel, A. A.*; Munsie, T.*; Williams, T. J.*; Luke, G. M.*; Kakeshita, Teruhisa*; Uchida, Shinichi*; Higemoto, Wataru  ; Ito, Takashi   ; Gu, B.; Maekawa, Sadamichi; Morris, G. D.*; Uemura, Yasutomo*

In a prototypical ferromagnet (Ga,Mn)As based on a III-V semiconductor, substitution of divalent Mn atoms into trivalent Ga sites leads to severely limited chemical solubility and metastable specimens available only as thin films. The doping of hole carriers via (Ga,Mn) substitution also prohibits electron doping. To overcome these difficulties, Masek et al. theoretically proposed systems based on a I-II-V semiconductor LiZnAs, where isovalent (Zn,Mn) substitution is decoupled from carrier doping with excess/deficient Li concentrations. Here we show successful synthesis of Li$$_{1+y}$$(Zn$$_{1-x}$$Mn$$_x$$)As in bulk materials. We reported that ferromagnetism with a critical temperature of up to 50 K is observed in nominally Li-excess compounds, which have p-type carriers.

Accesses

:

- Accesses

InCites™

:

Percentile:93.74

Category:Multidisciplinary Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.