Refine your search:     
Report No.
 - 

Evaluation of mean time between accidental interruptions for accelerator klystron systems based on the reliability engineering method

Takei, Hayanori ; Furukawa, Kazuro*; Yano, Yoshiharu*; Ogawa, Yujiro*

Experiences with existing high-power proton accelerators indicate that frequent beam trips are inevitable. One of the reasons for such frequent beam trips is the accidental interruption to protect accelerators against fatal failures. Generally, the failure frequency for the general machinery can be evaluated based on a reliability database for its components. On the other hand, the beam-trip frequency for the accidental interruption was not evaluated based on the reliability database because it has not yet been established. A principal reason for the lack of this reliability database is the inconsistency of data collection and analysis methods among laboratories. For example, there are at least three methods to estimate Mean Time Between accidental Interruptions (MTBI) for klystron systems. In the present study, the MTBI of the klystron systems of an electron/positron injector linac at the High Energy Accelerator Research Organization (KEK) was evaluated based on the reliability engineering method, in order to build the reliability database using the unified data collection and analysis method. As the result, the mean values of the MTBI by the traditional three methods were evaluated as 30.9, 32.0, and 50.4 hours. On the other hand, that by the reliability engineering method was evaluated as 57.3 hours, i.e., more than 1.14 times of the traditional results. Although these results are obviously different from traditional results, it appears that the present estimation based on the reliability engineering method is suitable for the MTBI of accelerator components as typified by the klystron system.

Accesses

:

- Accesses

InCites™

:

Percentile:100

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.