検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

The Preparation, physicochemical properties, and the cohesive energy of liquid sodium containing titanium nanoparticles

チタンナノ粒子を含む液体ナトリウムの凝集エネルギーと物理化学的特性

斉藤 淳一 ; 伊丹 俊夫; 荒 邦章 

Saito, Junichi; Itami, Toshio; Ara, Kuniaki

Liquid sodium containing titanium nanoparticles (LSnanop) of 10 nm diameter was prepared by dispersing titanium nanoparticles (2 at.% Ti) into liquid sodium with the addition of stirring and ultrasonic sound wave. The titanium nanoparticles themselves were prepared by the vapor deposition method. This new liquid metal, LSnanop, shows a remarkable stability due to the Brownian motion of nanoparticles in liquid sodium medium. In addition, the difference of measured heat of reaction to water between this LSnanop and liquid sodium indicates the existence of cohesive energy between the liquid sodium medium and dispersed titanium nanoparticles. The origin of the cohesive energy, which serves to stabilize this new liquid metal, was explained by the model of screened nanoparticles in liquid sodium. In this model negatively charged nanoparticles with transferred electrons from liquid sodium are surrounded by the positively charged screening shell, which may inhibit the gathering of nanoparticles by the "Coulombic repulsion coating". The atomic volume of LSnanop shows the shrinkage from the linear law, which also suggests the existence of cohesive energy. The viscosity of LSnanop is almost same as that of liquid sodium. This behavior was explained by the Einstein equation. The surface tension of LSnanop is 17% larger than that of liquid sodium. The cohesive energy and the negative adsorption may be responsible to this increase. Titanium nanoparticles in liquid sodium seem to be free from the Coulomb fission. This new liquid metal containing nanoparticles suggests the possibility to prepare various stable suspensions with new properties.

Access

:

- Accesses

InCites™

:

パーセンタイル:21.58

分野:Chemistry, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.