Refine your search:     
Report No.

Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

Takano, Nao*; Takahashi, Yuko*; Yamamoto, Mitsuru*; Teranishi, Mika*; Yamaguchi, Hiroko*; Sakamoto, Ayako; Hase, Yoshihiro; Fujisawa, Hiroko*; Wu, J.*; Matsumoto, Takashi*; Toki, Seiichi*; Hidema, Jun*

UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, ${it utr319}$ (${it UV Tolerant Rice 319}$), was isolated from a mutagenized population derived from 2,500 M1 seeds that were exposed to carbon ions. The ${it utr319}$ mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced CPDs, nor the repair of cyclobutane pyrimidine dimers or (6-4) pyrimidine-pyrimidone photodimers was altered in the ${it utr319}$ mutant. Thus, the ${it utr319}$ mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the ${it utr319}$ mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7were predicted to represent the mutant allele. Sequence analysis of the chromosome region in ${it utr319}$ revealed a deletion of 45,419 bp. Database analysis indicated that the Os07g0265100 gene, ${it UTR319}$, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, ${it utr319}$ is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.



- Accesses







[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.