Refine your search:     
Report No.

Turbulence spectra, transport, and $$E$$$$times$$$$B$$ flows in helical plasmas

Watanabe, Tomohiko*; Nunami, Masanori*; Sugama, Hideo*; Satake, Shinsuke*; Matsuoka, Seikichi* ; Ishizawa, Akihiro*; Maeyama, Shinya; Tanaka, Kenji*

Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation byturbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic $$E$$$$times$$$$B$$ flows determined by the ambipolarty condition for neoclassical particle fluxes.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.