Refine your search:     
Report No.
 - 

Corrosion resistance of structural materials in high-temperature aqueous sulfuric acids in thermochemical water-splitting iodine-sulfur process

Kubo, Shinji  ; Futakawa, Masatoshi  ; Ioka, Ikuo  ; Onuki, Kaoru; Yamaguchi, Akihisa*

Very harsh environments exist in the iodine-sulfur process for hydrogen production. Structural materials for sulfuric acid vaporizers and concentrators are exposed to high-temperature corrosive environments. Immersion tests were carried out to evaluate the corrosion resistance of ceramics and to evaluate corrosion-resistant metals exposed to environments of aqueous sulfuric acids at temperatures of 320, 380, and 460$$^{circ}$$C, and pressure of 2 MPa. The aqueous sulfuric acid concentrations for the temperatures were 75, 85, and 95 wt%, respectively. Ceramic specimens of silicon carbides (SiC), silicon impregnated silicon carbides (Si-SiC), and silicon nitrides (Si$$_{3}$$N$$_{4}$$) showed excellent corrosion resistance from weight loss measurements after exposure to 75, 85, and 95 wt% sulfuric acid. High-silicon irons with silicon content of 20 wt% showed a fair measure of corrosion resistance. However, evidence of crack formation was detected via microscopy. Silicon enriched steels severely suffered from uniform corrosion with a corrosion rate in 95 wt% sulfuric acid of approximately 1 gm$$^{-2}$$h$$^{-2}$$. Among the tested materials, the ceramics SiC, Si-SiC, and Si$$_{3}$$N$$_{4}$$ were found to be suitable candidates for structural materials in direct contact with the considered environments.

Accesses

:

- Accesses

InCites™

:

Percentile:53.79

Category:Chemistry, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.