Refine your search:     
Report No.

Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels

Takeuchi, Tomoaki  ; Kakubo, Yuta*; Matsukawa, Yoshitaka*; Nozawa, Yasuko*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Nishiyama, Yutaka ; Katsuyama, Jinya ; Yamaguchi, Yoshihito ; Onizawa, Kunio ; Suzuki, Masahide*

Microstructures and hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to the thermal aging at 400 $$^{circ}$$C for 100-10,000 h were investigated using atom probe tomography and nanoindentation technique. The Cr concentration fluctuation in the $$delta$$-ferrite phase caused by spinodal decomposition rapidly progressed by the 100 h aging while NiSiMn clusters increased in number density at 2,000 h and coarsened at 10,000 h. The hardness of the $$delta$$-ferrite phase also rapidly increased at the short aging time. The Cr concentration fluctuation and the hardness were in good correlation with the degree of the Cr concentration fluctuation rather than the formation of the NiSiMn clusters. These results strongly suggested that the dominant factor of the hardening of the $$delta$$-ferrite phase by the thermal aging was Cr spinodal decomposition.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.