Long term performance of radial shielding subassemblies with zirconium hydride in sodium cooled fast reactor core; Hydrogen release into primary coolant and helium production in cladding tube steels
Inoue, Masaki ; Kaito, Takeji
Long term performance of radial shielding subassemblies with zirconium hydride, which is one of the key technologies to reduce reactor vessel radius, was evaluated for the demonstration fast breeder reactor core. Hydrogen permeation through cladding tube wall and release into primary coolant is essential to design cold traps and shielding performance. Also, higher thermal neutron fluence produces larger helium in cladding tube steels, and may degrade mechanical properties and dimensional stability. A new model was established to quantitatively calculate hydrogen release and helium production under steep gradient of neutron and ray fluxes in outer core region. Austenitic stainless steel (PNC316) and ferritic/martensitic steel (PNC-FMS) will not be capable for 60 years because of large helium production and high permeability, respectively. In contrast, dual wall tube combining PNC-FMS with surface oxidized Fe-18Cr-2Al alloy will be applicable for 60 years in case that manufacturing process is successfully developed.