Refine your search�ソスF     
Report No.
 - 

Multiscale thermodynamic analysis on fracture toughness loss induced by solute segregation in steel

Yamaguchi, Masatake   ; Kameda, Jun*

A significant loss of fracture toughness ($$K_{rm Ic}$$) is induced by intergranular (grain boundary; GB) segregation of metalloid solute in alloy steels. Yet, the mechanism has not been clarified from a multiscale point of view. From a thermodynamic approach aided by first-principles calculations, we show here that segregated solute with higher energetic stability on fracture surfaces causes a larger linear reduction in the ideal work to intergranular fracture ($$2gamma_{rm int}$$); i.e., the energy difference between a GB and its two fracture surfaces. Remarkably, the combined analysis with first-principles calculations and fracture mechanics experiments found several orders of magnitude more energy loss in $$K_{rm Ic}$$ for a specific range in the $$2gamma_{rm int}$$ within only a few tenths of J/m$$^2$$. These results illustrate that the GB of steel has the threshold energy of atomic cohesion under which catastrophic failure occurs.

Accesses

:

- Accesses

InCites™

:

Percentile:62.33

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.