Refine your search:     
Report No.
 - 

Changes in chemical composition caused by water-rock interactions across a strike-slip fault zone; Case study of the Atera Fault, Central Japan

Niwa, Masakazu   ; Mizuochi, Yukihiro*; Tanase, Atsushi*

It is expected that in some cases water-rock interaction in fault zones can strongly affect nuclide migration. In this study, we analyzed the chemical composition of well-exposed fault rocks from the Atera Fault, Central Japan, to understand the variability and behavior of major and some selected trace elements. Hydrogen and oxygen isotope ratios in fault gouges, and carbon and oxygen isotope ratios in carbonates indicate that the two major clay-rich zones formed in bedrock at near surficial depth, consistent with observed deformation structures. Based on the analyses of chemical compositions, we identified depletion of SiO$$_{2}$$, Na$$_{2}$$O, K$$_{2}$$O, and light rare earth elements associated with the formation of smectite and kaolinite, and increase of CaO, MnO, and heavy rare earth elements associated with carbonate precipitation caused by the mixing of allochthonous basalt fragments during fault activities.

Accesses

:

- Accesses

InCites™

:

Percentile:50.67

Category:Geochemistry & Geophysics

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.